MBF Pksq

 

 

MBF BoF 
MBF Ch 
MBF CR 
MBF Hl 
MBF Ik 
MBF Mag1 
MBF Mcb 
MBF Mlog 
MBF Mlm 
MBF Nt3 
MBF Pk 
MBF Pkcb 
MBF Pksq 

 

 

Mind-Boggling Fractal Gallery - Pokorny square

The fractals below were created with Paul W. Carlson's Mind-Boggling Fractals (MBF).

This function is called Pokorny square:

(1/(Z^2 + C))^2

As the program creates really stunning images I publish some of them here. Here is a Julia set.


Base image:

Pokorny square

Variations/Zooms

Variations/Zooms

PkSq_000_000MLSt

Mandelbrot Lset

PkSq_000_002aMAF1

rendering method: AF1

PkSq_000_002a_z1MAF1

AF1 zoomed in

Rendering methods:

AF1 => Angle Function 1

ADF => Angle Double Function

PkSq_000_001MADF

rendering method: ADF

 

PkSq_000_001aMADF

rendering method: ADF

PkSq_000_001a_z1MADF

ADF zoomed in

Rendering method:

AF1 => Angle Function 2

PkSq_000_003MAF2

rendering method: AF2

PkSq_000_003_z1MAF2

AF2 zoomed in

 

PkSq_000_003aMAF2

rendering method: AF2

PkSq_000_003a_z1MAF2

AF2 zoomed in

Rendering method:

Con => Cones

PkSq_000_005aMCon

rendering method: Con

 

PkSq_000_005bMCon

rendering method: Con

PkSq_000_005b_z1MCon

Con zoomed in

Rendering method:

HSg => Half Segments

PkSq_000_007bMHSg

rendering method: HSg

 

PkSq_000_007b_z1MHSg

HSg zoomed in

PkSq_000_007b_z2MHSg

HSg zoomed in

Rendering method:

HSqr => Hollow Squares

PkSq_000_009aMHSqr

rendering method: HSqr

PkSq_000_009bMHSqr

rendering method: HSqr

Rendering method:

Hyc => Hypocycloids

PkSq_000_010MHyc

rendering method: Hyc

Rendering method:

Ptl => Petals

PkSq_000_011bMPtl

rendering method: Ptl

 

PkSq_000_011cMPtl

rendering method: Ptl

PkSq_000_011c_z1MPtl

Ptl zoomed in

Rendering method:

Rng => Rings

PkSq_000_012MRng

rendering method: Rng

PkSq_000_012aMRng

rendering method: Rng

Rendering method:

RSg => Ring Segments

PkSq_000_013MRSg

rendering method: RSg

PkSq_000_013aMRSg

rendering method: RSg

Rendering method:

Spd => Spheroids

PkSq_000_014aMSpd

rendering method: Spd

PkSq_000_014bMSpd

rendering method: Spd

Rendering method:

Sph => Spheres

PkSq_000_015aMSph

rendering method: Sph

 

PkSq_000_015a_z2MSph

Sph zoomed in

PkSq_000_015a_z3MSph

Sph zoomed in

Rendering method:

Sqr => Squares

PkSq_000_016aMSqr

rendering method: Sqr

Rendering method:

StD => Star of David

PkSq_000_017aMStD

rendering method: StD

PkSq_000_017bMStD

rendering method: StD

Rendering method:

Stk => Stalks

PkSq_000_018MStk

rendering method: Stk

Rendering method:

Tri => Triangles

PkSq_000_020MTri

rendering method: Tri

PkSq_000_020aMTri

rendering method: Tri

Rendering method:

Atan => Arcus tangens

PkSq_000_021gMAtan

rendering method: Atan

PkSq_000_021hMAtan

rendering method: Atan

     

Base image:

Pokorny square

Variations/Zooms

Variations/Zooms

PkSq_001_000JLSt

Julia Lset

PkSq_001_001aJADF

rendering method: ADF

PkSq_001_001cJADF

rendering method: ADF

Rendering method:

ADF => Angle Double Function

PkSq_001_001JADF

rendering method: ADF

Rendering method:

AF1 => Angle Function 1

PkSq_001_002cJAF1

rendering method: AF1

PkSq_001_002c_z1JAF1

AF1 zoomed in

 

PkSq_001_002aJAF1

rendering method: AF1

Rendering method:

AF1 => Angle Function 2

PkSq_001_003aJAF2

rendering method: AF2

PkSq_001_003a_z1JAF2

AF2 zoomed in

 

PkSq_001_003JAF2

rendering method: AF2

Rendering method:

Con => Cones

PkSq_001_005JCon

rendering method: Con

PkSq_001_005bJCon

rendering method: Con

Rendering method:

Bub => Bubbles

PkSq_001_004aJBub

rendering method: Bub

Rendering method:

DSpd => Dimpled Spheroids

PkSq_001_006aJDSpd

rendering method: DSpd

PkSq_001_006bJDSpd

rendering method: DSpd

Rendering method:

HSg => Half Segments

PkSq_001_007aJHSg

rendering method: HSg

PkSq_001_007bJHSg

rendering method: HSg

Rendering method:

HSqr => Hollow Squares

PkSq_001_009aJHSqr

rendering method: HSqr

PkSq_001_009bJHSqr

rendering method: HSqr

Rendering method:

Hyc => Hypocycloids

PkSq_001_010JHyc

rendering method: Hyc

PkSq_001_010bJHyc

rendering method: Hyc

Rendering method:

Ptl => Petals

PkSq_001_011aJPtl

rendering method: Ptl

PkSq_001_011cJPtl

rendering method: Ptl

Rendering method:

Rng => Rings

PkSq_001_012aJRng

rendering method: Rng

PkSq_001_012bJRng

rendering method: Rng

Rendering method:

RSg => Ring Segments

PkSq_001_013JRSg

rendering method: RSg

 

PkSq_001_013bJRSg

rendering method: RSg

PkSq_001_013cJRSg

rendering method: RSg

Rendering method:

Spd => Spheroids

PkSq_001_014JSpd

rendering method: Spd

PkSq_001_014bJSpd

rendering method: Spd

Rendering method:

Sph => Spheres

PkSq_001_015aJSph

rendering method: Sph

PkSq_001_015bJSph

rendering method: Sph

Rendering method:

StD => Star of David

PkSq_001_017aJStD

rendering method: StD

 

PkSq_001_017bJStD

rendering method: StD

PkSq_001_017dJStD

rendering method: StD

Rendering method:

Stk => Stalks

PkSq_001_018aJStk

rendering method: Stk

PkSq_001_018cJStk

rendering method: Stk

Rendering method:

TBs => Tangent Balls

PkSq_001_019JTBs

rendering method: TBs

PkSq_001_019aJTBs

rendering method: TBs

Rendering method:

Tri => Triangles

PkSq_001_020JTri

rendering method: Tri

PkSq_001_020aJTri

rendering method: Tri

Rendering method:

Atan => Arcus tangens

PkSq_001_021JAtan

rendering method: Atan

PkSq_001_021aJAtan

rendering method: Atan

Rendering method:

Mod => Modulus

PkSq_001_022JMod

rendering method: Mod

PkSq_001_022aJMod

rendering method: Mod

 


Copyright (c) 1996-2025 Droj. All rights reserved.